Chiller

Chiller

A chiller is a machine that removes heat from a liquid via a vapor-compression or absorption refrigeration cycle. This liquid can then be circulated through a heat exchanger to cool air or equipment as required.
Use in air conditioning
In air conditioning systems, chilled water is typically distributed to heat exchangers, or coils, in air handling units, or other type of terminal devices which cool the air in its respective space(s), and then the chilled water is re-circulated back to the chiller to be cooled again.A typical chiller for air conditioning applications is rated between 15 to 1500 tons (180,000 to 18,000,000 BTU/h or 53 to 5,300 kW) in cooling capacity. Chilled water temperatures can range from 35 to 45 degrees Fahrenheit or 1.5 to 7 degrees Celsius, depending upon application requirements.
Use in industry
In industrial application, chilled water or other liquid from the chiller is pumped through process or laboratory equipment. Industrial chillers are used for controlled cooling of products, mechanisms and factory machinery in a wide range of industries. They are often used in the plastic industry in injection and blow molding, metal working cutting oils, welding equipment, die-casting and machine tooling, chemical processing, pharmaceutical formulation, food and beverage processing, paper and cement processing, vacuum systems, X-ray diffraction, power supplies and power generation stations, analytical equipment, semiconductors, compressed air and gas cooling. They are also used to cool high-heat specialized items such as MRI machines and lasers, and in hospitals, hotels and campuses.
The chillers for industrial applications can be centralized, where each chiller serves multiple cooling needs, or decentralized where each application or machine has its own chiller. Each approach has its advantages. It is also possible to have a combination of both central and decentral chillers, especially if the cooling requirements are the same for some applications or points of use, but not all.
Decentral chillers are usually small in size (cooling capacity), usually from 0.2 tons to 10 tons. Central chillers generally have capacities ranging from ten tons to hundreds or thousands of tons.
Chilled water is used to cool and dehumidify air in mid- to large-size commercial, industrial, and institutional (CII) facilities. Water chillers can be either water cooled, air-cooled, or evaporatively cooled. Water-cooled chillers incorporate the use of cooling towers which improve the chillers' thermodynamic effectiveness as compared to air-cooled chillers. This is due to heat rejection at or near the air's wet-bulb temperature rather than the higher, sometimes much higher, dry-bulb temperature. Evaporatively cooled chillers offer efficiencies better than air cooled, but lower than water cooled.
Water cooled chillers are typically intended for indoor installation and operation, and are cooled by a separate condenser water loop and connected to outdoor cooling towers to expel heat to the atmosphere.
Air Cooled and Evaporatively Cooled chillers are intended for outdoor installation and operation. Air cooled machines are directly cooled by ambient air being mechanically circulated directly through the machine's condenser coil to expel heat to the atmosphere. Evaporatively cooled machines are similar, except they implement a mist of water over the condenser coil to aid in condenser cooling, making the machine more efficient than a traditional air cooled machine. No remote cooling tower is typically required with either of these types of packaged air cooled or evaporatively cooled chillers.
Where available, cold water readily available in nearby water bodies might be used directly for cooling, or to replace or supplement cooling towers. The Deep Lake Water Cooling System in Toronto, Canada, is an example. It dispensed with the need for cooling towers, with a significant cut in carbon emissions and energy consumption. It uses cold lake water to cool the chillers, which in turn are used to cool city buildings via a district cooling system. The return water is used to warm the city's drinking water supply which is desirable in this cold climate. Whenever a chiller's heat rejection can be used for a productive purpose, in addition to the cooling function, very high thermal effectiveness is possible.